Group divisible covering designs with block size four

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group divisible designs with block size four and two groups

We give some constructions of new infinite families of group divisible designs, GDD(n, 2, 4; 1, 2), including one which uses the existence of Bhaskar Rao designs. We show the necessary conditions are sufficient for 3 n 8. For n= 10 there is one missing critical design. If 1> 2, then the necessary conditions are sufficient for n ≡ 4, 5, 8 (mod 12). For each of n=10, 15, 16, 17, 18, 19, and 20 we...

متن کامل

Modified group divisible designs with block size four

The existence of modiied group divisible designs with block size four is settled with a handful of possible exceptions.

متن کامل

Optimal constant weight covering codes and nonuniform group divisible 3-designs with block size four

Let Kq(n, w, t, d) be the minimum size of a code over Zq of length n, constant weight w, such that every word with weight t is within Hamming distance d of at least one codeword. In this article, we determine Kq(n, 4, 3, 1) for all n ≥ 4, q = 3, 4 or q = 2m + 1 with m ≥ 2, leaving the only case (q, n) = (3, 5) in doubt. Our construction method is mainly based on the auxiliary designs, H-frames,...

متن کامل

Splitting group divisible designs with block size 2×4

The necessary conditions for the existence of a (2 × 4, λ)-splitting GDD of type g are gv ≥ 8, λg(v−1) ≡ 0 (mod 4), λg2v(v−1) ≡ 0 (mod 32). It is proved in this paper that these conditions are also sufficient except for λ ≡ 0 (mod 16) and (g, v) = (3, 3).

متن کامل

Concerning cyclic group divisible designs with block size three

We determine a necessary and sufficient condition for the existence of a cyclic {3}-GDD with a uniform group size 6n. This provides a fundamental class of ingredients for some recursive constructions which settle existence of k-rotational Steiner triple systems completely.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Designs

سال: 2017

ISSN: 1063-8539,1520-6610

DOI: 10.1002/jcd.21596